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A theoretical model of the kinetics of perfusion based on temperature-time superposition is suggested. 

Introduction. The analysis of SHF hyperthermia includes several aspects: the comparative influence of 

different factors on hyperthermia; prediction of temperature fields for tissues under hyperthermia; effective 

hyperthermia control; a retrospective analysis of hyperthermia; and determination of heat doses and perfusion in 

a hyperthermia process [1, 2 ]. As a basis, a bioheat equation (BHE) is used that describes the heat release in 

living biological tissue due to metabolism and electromagnetic energy absorption as well as heat transfer by 

conduction and convection. 
It is most difficult to account for the convective factor, which is related with perfusion and plays a decisive 

part in formation of temperature fields in hyperthermia. In [1 ], a survey is made of experimental studies of 

perfusion in normal and tumour tissues under hyperthermia conditions. It is established that during local heating 

perfusion in normal tissues substantially increases, sometimes by more than one order of magnitude. Therefore it 

is necessary to introduce some empirical temperature dependence of the perfusion rate into the BHE [3-5 ], which 

complicates the model. Another way to describe blood flow is by thermoregulatory models [6-8 ], in which the 

perfusion rate depends on some integral temperature and its integral changes. Though the mentioned works are a 

step to improve the hyperthermia model, it is insufficient to describe perfusion only by the instantaneous 
temperature dependence. Experimental studies of perfusion in normal tissues [9-13 ] show that the perfusion rate 
continues to change with time even when the preset tissue temperature is attained. Perfusion continues to increase 

up to some moment and then starts decreasing. Accounting of these regularities in a theoretical analysis of 

hyperthermia dynamics involves difficulties since the data obtained pertain to isothermal processes, they are diverse 

and inconvenient for parametrization. Overcoming these difficulties is one of the goals of the present work. 

Proposed Mathematical Model. Heat transfer in a living body is determined, to a considerable extent, by 

perfusion. The latter depends on both the temperature and the exposure to heat, i.e., heating duration. An effort 

to take into consideration this factor in the BHE encounters certain difficulties. First of all, the experimental data 

pertain to isothermal processes while in the bioheat equation, the temperature is a variable and sought parameter. 

Generally speaking, correct solution of the problem requires a knowledge of the kinetics of change of the parameters 
of the vascular system under heating. However, in such a statement the problem is extremely difficult because the 

processes in the organism depend on many factors, whose interrelation is complicated and ambiguous. 
In the mechanics of polymers [14 ] and in chemical kinetics [15 ], problems often arise in which isothermal 

measurement data are used to describe nonisothermal processes. If the kinetics of the processes is unknown, 

simplified methods including, first of all, the so-called method of temperature-time analogy (TTA) are employed. 
The essence of the latter lies in the fact that the time change s of the process are associated with its intensity, which 
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is determined by temperature. Applicability of the method depends on two assumptions: that (a) the temperature 

dependence of the intensities of different processes must be one and the same ("one process") and (b) no structural 

changes occur in the system. Often it is impossible to prove or disprove these assumptions theoretically and therefore 

the applicability of the method is substantiated empirically. If we represent isothermal curves in the form of a 

logarithmic dependence on time, in the case of T T A  validity the curves merge and form a single (universal) curve 

by displacing individual dependences along the x- and y-axes. Mathematically, the TTA for isothermal processes 

is written as follows 

a (T, z) = fl (T) d~ If2 (T) z ] ,  (1) 

where fl (T) is a function that depends only on the temperature and type of material, and qb(~) is the universal 

temperature-time dependence: The functions fl(T) and f2(T) in Eq. (1) are determined by the values of 

displacement and, naturally, must have a justified form. As a result of TTA application, changes in the parameters 

are represented as a function of reduced time, which substantially simplifies the representation of experimental 

c u r v e s .  

by 

Use of the TTA makes it possible to pass easily to nonisothermal processes. For this, we replace ~ = f2(T)r 

I = f f2 (T) dr .  (2) 
o 

For isothermal processes such a substitution is merely a formal procedure; for nonisothermal processes it 

is assumed in (2) that T-- T(z). 
We now consider the possibility of using the TTA to describe approximately the kinetics of changing the 

blood flow upon heating. The majority of investigators distinguish two phases of blood-flow variation under heating: 

phase I, with enhanced blood flow; and phase II, which is accompanied by a drastic decrease of the microcirculation 

intensity. The cause of these phenomena is not quite clear from the physiological viewpoint: in [12 ], it is assumed 

that phase I is associated with the accumulation of vasoactive substances (bradikinin and histamine), whereas phase 

II involves a hematocrit increase due to enhancement of the increased permeability of vessels and, consequently, 

a drastic increase of the rheological factor due to increased blood viscosity and plasticity. Limiting blood flow 

weakening in a biological tissue is defined as stasis. 
The blood-flow weakening highly depends on the temperature of the process. For instance, according to 

data of [16 ] heating by I~ reduces by approximately half the time of attaining stasis in sarcoma BA 1112; the 

temperature-time relation for 50% microcirculation weakening rST50 in the temperature range 42.5-44.0~ is 

TSTS0 = ~0 exp [-- 0.747 (43 -- T) ],  (3) 

Similar relations also hold for blood flow in normal tissues and are observed in many biological objects for 

both reversible and irreversible processes [16 ]. Thus, the temperature dependence of cell death in vitro [17 ] for a 
wide temperature range (43-57~ obeys the same regularities. The same relations have been used in [4 ] to 

evaluate thermal dose. 
The character of changes in the blood flow in phase I is, obviously, peculiar for various tissues since it is 

related to the thermoregulatory capacity of peripheral vascular systems. It is well known [12, 18] that the 

enhancement of blood flow in a tumour due to underdevelopment of its circulatory network is substantially weaker 

than in the host normal tissues. Apparently, the enhancement of blood flow is always restricted by some 

physiological limit that is different for some kinds of tissues. According to the data of [13 ] in the range of 37-43~ 
the maximum magnitude of skin linearity depended on temperature. Muscle blood flow in dog extremities has been 

found to depend exponentially on temperature [10]. Various tissues exhibit different rates of blood-flow 
enhancement. Thus, in phase I no universal temperature-time dependences are likely to hold. As is known [14 ], 

in the case of two processes with different temperature regularities the TTA approximation may be also used: 
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Fig. 1. Temperature-time characteristics of some biological processes in 

hyperthermia: 1) 50% weakening of microcirculation [16 ]; 2) isolines of the 

killing of cells [17 ]; 3) maxima of blood flow [10 ]; 4) maxima of muscle blood 

flow [11 ]; 5) maxima of skin blood flow [12]; 6) maxima of muscle blood 

flow [12 ]. r; T, ~ 

Fig. 2. Muscle perfusion rate of rats exposed to water bath heating at different 

temperatures [ 12] reduced to the universal dependence. W4a, perfusion rate 

reduced to 43~ ram/(100 g-rain). ~, min. 

a) in each region of the temperature-time diagram where one of the processes is dominant; 

b) in the "equilibrium region" where two processes balance each other. In this case, the temperature 
coefficient differs from the coefficients of each process. 

However, in the general case of two processes it is insufficient to use only isothermal data; it is necessary 

to conduct a special series of experiments, i.e., to measure the blood flow rate at different heating rates. A 

comparison of the perfusion rates with the data of isothermal measurements allows a final conclusion to be drawn 
that the TTA may be used to describe local hyperthermia. 

Isothermal data also fail to describe stepwise changes in blood flow caused by abrupt changes of 

temperature [13 ]. To describe such a response and include it in the model, it is necessary to measure the blood 
flow rates at temperature jumps. 

At sufficiently high temperatures, phase II distinctly manifests itself. The characteristic times of the 

process, i.e., the times of the onset of maximum perfusion will be determined by the temperature-time charac- 

teristics of phase II. Figure 1 shows the temperature-time characteristics of different biological processes in the 
temperature range of 42-45~ As is seen, the times of attaining maximum perfusion [10, 12 ] correspond well to 

relation (3). The values of the maxima and their temperature dependences will be different for various tissues. 
Thus, in a first approximation the perfusion rate W is determined by the product of two functions: 

W = fl (T) �9 If2 (7") v ]. (4) 

Figure 1 in [1 ] and Fig. 2 of the present work show the time dependence of perfusion according to the data 
of [12 ] in the initial form and after reducing it to the universal temperature-time dependence. Remembering the 

complicated character of biological processes, this procedure may be considered quite successful. At f2 -- exp 
(-0.8AT), fl = exp (0.7AT) the perfusion curves merge and form a single curve (within the limits of measurement 
errors): 

W - W 0 = / I  r (~) = WO exp (0,7AT) ~ exp ( -  ~). (5) 
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Fig. 3. Perfusion in the normal muscle tissue (solid line) and in tumour 

(dashed line) after 30 min heating according to relations (5) and (8). IV, 

ram/(100 g. min). 

If the perfusion curves are similar to each other and have one maximum at ~7 = rm, the time-reduction 

procedure may be simplified. Since r m is the only time characteristic of the curves, the dependence ~,n(73 

determines the function f2(T): 

f2 (T) = C / r  m , (6) 

where C is a numerical coefficient whose value is insignificant (in further calculations it is assumed equal to unity). 

Thus, the proposed model is reduced to substitution of some dimensionless "physiological" time 

T 

~ f d t / t  m (T) .  (7) 
0 

for the "physical" time z. 
As mentioned above, changes in perfusion are caused by the accumulation of physical and/or  chemical 

changes in an organism, which is mathematically expressed by the integral, therefore use of expression (7) is quite 

justified. 
Use of the notion of "physiological" time allows the experimental curves to be scaled in a natural manner. 

Application of the Model for Describing the Typical Processes in Living Tissue. We shall consider a few 

several simple applications of the proposed model which allow some known experimental dependences and effects 

to be describe. 
Temperature Dependence of  the Perfusion Rate  at the Described Heating Time. In [12], the authors 

summarize experimental data on the temperature dependence of perfusion in normal and tumour tissues upon 

30-min heating. Our relation (5), obtained as a result of reducing the initial isothermal data on muscle perfusion, 

also allows one describe a similar dependence. To describe tumour perfusion Wtum, we shall use a relation analogous 

to (5): 

Wturn - WO, tuna = W0, tuna exp (0.1AT) ~ exp ( -  ~). (8) 

The coefficient in (8) is such that the perfusion rate is doubled upon heating up to 43~ A comparison of (5) and 

(8) with respect to temperature and the data of [12] shows a rather good fit of the curves (Fig. 3), which 

demonstrates the potentialities of the reduction method used. 
Water Bath Heating. We shall consider a procedure of water bath heating of the lower extremities of rats 

at different water temperatures investigated experimentally in [12]. We write the bioheat equation in an axial 

symmetry approximation as 
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Fig. 4. Modeling of water-bath heating of normal (a) and tumour (b) tissues 

at different water temperatures: a) comparison of the calculated results using 

the linear (dotted line) and nonlinear (dashed line) models. Tw = 45~ 
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Fig. 5. SHF heating of muscle tissue at a depth of 1.5 cm: a) theoretical 

calculation at SAR = 20 W/kg (1), 50 (2), and 1.00 (3); b) calculation at SAR 

= 43 W/kg  without (dashed line) and with (solid line) regard for a delay of 

To = 9 min as compared to the data [11 ]. 

OT O ( 2 r O T  ) 
rpc Or - Or -~r + rQm + rPbCbW (Ta -- T) = 0 .  (9) 

The prescribed water temperature T w is preserved on the skin surface r -- R. A numerical solution of (9) with regard 

for (5) is shown in Fig. 4a at the following parameters: R = 0.5 cm; Wo = 4.6 mli ter / (100 g. min);pc = pbcb = 4 
J / ( cma 'deg) ;  Qm = 0, 2 = 0.38 W / ( m . ~  A similar calculation was carried out for a tumour (Eq. (9) with an 

account of (8), Fig. 4b). In the initial stage of heating (approximately 10 min) a monotonic temperature increase, 

the same for the both types of tissue, was observed, and then the temperature  decreased due to perfusion 

enhancement.  

For normal tissue, its maximum temperature was lower by approximately I~ than the water temperature; 

for the tumour tissues this difference was less and approximately equal to 0.5~ Then  the temperature  decreased 

in the normal tissue by 1 -2~  and in the tumour, by 0 .5-1.0~ Later, after 3 0 - 4 0  min heating the turnout 

temperature again began to rise and at the end of heating (60 rain) was almost equal to the water temperature.  As 

for the temperature of the muscle tissue, it remained practically unchanged and did not attain 43~ (even after of 

heating at Tw = 45~ These regularities of the calculated temperature curves are in fair agreement  with the 

experimental curves [12 ]. 

Local SHF Heating by a Constant-Power Source. Despite the seeming simplicity of the problem, with such 

heat ing a number  of nontrivial effects were revealed that were associated with local thermoregulat ion of the 
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organism. Thus, in [11 ] SHF heating of the muscle tissue of dog extremities yielded four radically different types 

of temperature curves: 

1. A monotonic increase in tissue temperature that reached its stationary value T _< 41~ for 10-20 rain. 

Such a regime was observed at low values of absorbed power (SAR < 30 W/kg). 

2. Having attained the maximum (5 -15  rain heating), the temperature decreased by 1-2~ and then 

remained virtually unchanged. This has been observed by many investigators [11, 19, 20]; SAR = (20-50) W/kg. 

3. Periodic increases and decreases in a temperature [11 ]. The amplitude of the temperature fluctuations 

reached 7~ with a period of 20-60 min. SAR was 45-80 W/kg. 

4. A temperature increase leading to irreversible changes in the tissue; SAR > 80-100 W/kg. 

SHF heating of muscle tissue has been evaluated under the following assumptions: the absorbed power 

exponentially decreases with depth and the attenuation coefficient is 64 m- l ;  the skin surface is air cooled at Ta 

= 20~ and the heat transfer coefficient a = 50 W/(m 2. C); and no radial heat spreading (one-dimensional heat 

transfer) occurs. Figure 5a shows calculation results of the temperature curves at different absorbed powers. It is 

seen that the model qualitatively correctly describes temperature curves of types 1, 2, and 4. The substantial 

divergence from curves of type 3 is due to the delayed response of the blood flow, which is substantial at high rates 

of temperature change. This delay has been detected in a number of experimental studies (see, e.g., [21 ]). To 

describe such a response, we assume formally that the perfusion rate in a tumour is determined by the temperature 

factor with delay 30: 

W ,  W 0 = fl [T (T - TO) ] @ (~) = W 0 exp [0.7AT (T - ~0) ] ~ exp (-- ~). (i0) 

Figure 5b shows that the model fits the experimental data [11 ] at r0 = 9 rain. However, the correct account of this 

effect needs special studies and, first of all, analysis of the response of perfusion to sudden changes in temperature. 

As it follows from the results of [13 ] such a response differs qualitatively from the response of perfusion to slow 

heating. 
Conclusions. The thermal processes in living tissue may be described using the following scheme. In the 

first stage, data on the changes in perfusion at different temperatures are reduced to a single curve (for each type 

of tissue), and then the approximating functions fl,  f2, and 90 are determined. In the second stage, the generalized 

dependence is used to predict temperature fields by solving the bioheat equation. 

As judged from the reported results, the proposed model describes well some known empirical regularities 

with a comparatively slow change in tissue temperature, which is most important from the viewpoint of clinical 

trials. The proposed scheme seems to be quite adequate for such processes. To enjoy successful application of the 

model, it is necessary to pick up extensive data about the blood flow changes in different tissues of an organism. 

This model is undoubtedly useful for the generalized prediction of hyperthermia. But the individual concrete 

prediction of thermal fields within the framework of this generalized model will be, naturally, quite approximate 

though use of the general regularities of changes in the human blood flow will also make it possible to improve the 

scheme of interactive short-range forecasting. 
Sudden changes in a temperature entail a qualitatively different response of the blood flow that is not 

described by the TTA. Such responses are probably described by kinetic equations but their investigation is beyond 

the scope of the present work. 
The authors thank the Foundation of Fundamental Researches of Belarus for financing the work on the 

contract BZ-222. 

N O T A T I O N  

T, temperature, ~ T, time; r, distance up to the axis; 2, thermal conductivity; Qm, metabolism heat; p, 

c, density and specific heat of the tissue; Pb, Cb, density and specific heat of blood; W, perfusion rate; Wo, perfusion 

rate at normal temperature. 
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